1 Sec X Cos X
Trigonometric Identities |
(Math | Trig | Identities) |
sin(theta) = a / c | csc(theta) = i / sin(theta) = c / a |
cos(theta) = b / c | sec(theta) = 1 / cos(theta) = c / b |
tan(theta) = sin(theta) / cos(theta) = a / b | cot(theta) = one/ tan(theta) = b / a |
sin(-10) = -sin(x)
csc(-x) = -csc(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)
sin^two(x) + cos^ii(ten) = 1 | tan^ii(x) + 1 = sec^2(x) | cot^2(x) + i = csc^two(x) | |
sin(x y) = sin ten cos y cos 10 sin y | |||
cos(ten y) = cos ten cosy sin ten sin y |
tan(x y) = (tan 10 tan y) / (1 tan x tan y)
sin(2x) = 2 sin x cos x
cos(2x) = cos^2(ten) - sin^2(ten) = 2 cos^2(10) - 1 = one - two sin^two(x)
tan(2x) = two tan(x) / (1 - tan^2(x))
sin^2(x) = 1/2 - ane/two cos(2x)
cos^2(10) = 1/2 + ane/2 cos(2x)
sin x - sin y = two sin( (x - y)/ii ) cos( (x + y)/2 )
cos x - cos y = -2 sin( (x - y)/two ) sin( (x + y)/2 )
angle | 0 | thirty | 45 | sixty | xc |
---|---|---|---|---|---|
sin^2(a) | 0/4 | 1/4 | 2/4 | 3/4 | 4/four |
cos^two(a) | 4/four | three/four | 2/4 | i/4 | 0/four |
tan^ii(a) | 0/4 | 1/3 | 2/two | 3/1 | 4/0 |
Given Triangle abc, with angles A,B,C; a is reverse to A, b opposite B, c reverse C:
a/sin(A) = b/sin(B) = c/sin(C) (Law of Sines)
c^2 = a^ii + b^2 - 2ab cos(C) b^2 = a^2 + c^2 - 2ac cos(B) a^2 = b^2 + c^two - 2bc cos(A) | (Police of Cosines) |
(a - b)/(a + b) = tan [(A-B)/2] / tan [(A+B)/two] (Law of Tangents)
1 Sec X Cos X,
Source: http://www.math.com/tables/trig/identities.htm
Posted by: jonesgrart1946.blogspot.com
0 Response to "1 Sec X Cos X"
Post a Comment