banner



1 Sec X Cos X

Trigonometric Identities
(Math | Trig | Identities)

sin(theta) = a / c csc(theta) = i / sin(theta) = c / a
cos(theta) = b / c sec(theta) = 1 / cos(theta) = c / b
tan(theta) = sin(theta) / cos(theta) = a / b cot(theta) = one/ tan(theta) = b / a


sin(-10) = -sin(x)
csc(-x) = -csc(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)

sin^two(x) + cos^ii(ten) = 1 tan^ii(x) + 1 = sec^2(x) cot^2(x) + i = csc^two(x)
sin(x y) = sin ten cos y cos 10 sin y
cos(ten y) = cos ten cosy sin ten sin y

tan(x y) = (tan 10 tan y) / (1 tan x tan y)

sin(2x) = 2 sin x cos x

cos(2x) = cos^2(ten) - sin^2(ten) = 2 cos^2(10) - 1 = one - two sin^two(x)

tan(2x) = two tan(x) / (1 - tan^2(x))

sin^2(x) = 1/2 - ane/two cos(2x)

cos^2(10) = 1/2 + ane/2 cos(2x)

sin x - sin y = two sin( (x - y)/ii ) cos( (x + y)/2 )

cos x - cos y = -2 sin( (x - y)/two ) sin( (x + y)/2 )

Trig Tabular array of Mutual Angles
angle 0 thirty 45 sixty xc
sin^2(a) 0/4 1/4 2/4 3/4 4/four
cos^two(a) 4/four three/four 2/4 i/4 0/four
tan^ii(a) 0/4 1/3 2/two 3/1 4/0


Given Triangle abc, with angles A,B,C; a is reverse to A, b opposite B, c reverse C:

a/sin(A) = b/sin(B) = c/sin(C) (Law of Sines)

c^2 = a^ii + b^2 - 2ab cos(C)

b^2 = a^2 + c^2 - 2ac cos(B)

a^2 = b^2 + c^two - 2bc cos(A)

(Police of Cosines)

(a - b)/(a + b) = tan [(A-B)/2] / tan [(A+B)/two] (Law of Tangents)

1 Sec X Cos X,

Source: http://www.math.com/tables/trig/identities.htm

Posted by: jonesgrart1946.blogspot.com

0 Response to "1 Sec X Cos X"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel